
MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 1 of 14

3.3 Software design

Jared R. Males

1 Introduction

The MagAO project was constructed around a working AO system, that of the LBT. We re-used the real-time
control software as-is, and adapted the AO control software developed by Arcetri (hereafter the AdOpt system)
to the Magellan computing environment. In addition, we developed a major extension to the LBTAO baseline by
adding the VisAO camera which works seamlessly as part of the MagAO system and routinely and reliably takes
science data on the 6.5 m Clay telescope. We also developed an interface for the Clio camera to work as part of
MagAO without rewriting the Clio control software itself.

The overall philosophy of MagAO-X software development will closely follow that used for MagAO: we will
base it on a working AO control architecture (in this case SCExAO) and adapt it for our use, minimizing truly new
software development. We will save significant development time through our use of the same components which
are already in use at SCExAO or on the existing MagAO system. These components include:

1. The BMC 2k Deformable Mirror

2. The OCAM-2k EMCCD PWFS detector

3. The PI TTM head

4. Filter wheel motors

5. Tip/tilt stage actuators

6. PI stages

In Section 3.2 we presented the preliminary design of the MagAO-X compute system. This includes the real-
time computer (RTC), the instrument control computer (ICC), and the AO operations computer (AOC), as well as
workstations in the Clay control room. Here we describe the software preliminary design.

2 Software Management

2.1 Version Control: git will be used for version control, with a repository hosted on github. The
standard “centralized workflow” will be used, where development occurs on local copies, with changes committed
to the central repository.

The git SHA-1 hash (essentially the version number) will be used as a reproducibility tracer. The SHA-1 of
the git repo at the time data or calibrations are taken will be traceable, either via timestamps or (when appropriate)
by writing the SHA-1 to metadata. To facilitate this, all processes will have the SHA-1 embedded at compile time

1

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 2 of 14

and will record this in their log at startup1. This ensures that at any time the state of the software system can be
recovered if needed to understand data recorded in the past.

Configuration files will also be kept under version control with git, and similarly the SHA-1 will be tracked
and traceable.

Note: for this system to work, it will be policy that in general no data will be taken with uncommitted changes
in the local repository. The user interface will warn when this is occurring (including compiler warnings). This
will be strictly enforced on the telescope. Common sense will be allowed during development and lab testing2.

2.2 Coding Standards and Documentation: The main language used for MagAO-X development will be
c++. This is mainly driven by performance, and the PI/Software-lead is proficient in modern c++. The SCExAO
real-time code is written in c, so adaptation of that code base for our use will be straightforward. The AdOpt
low-level code is also primarily in c, so re-use of various motion control code will be straightforward. The INDI
library is also provided in c++.

Python will also be used for scripting and other tasks.
All new code will be documented for processing with doxygen. Doxygen is a well known and maintained

code-documentation system. It allows for programmers to document code as they go, with the addition of a few
markup symbols. The result is nicely formatted html documentation, with browseable source code, indices, etc,
all automatically generated from source. We will also use this to document application interfaces (command line
options and configuration file parameters). The VisAO camera control software demonstrates this, https://
visao.as.arizona.edu/software_files/visao/html/annotated.html, though we expect to
improve on the application interface documentation significantly over what is shown there.

A minimum coding standard will be adhered to, which defines such things as header layouts, declare/define
standards, documentation conventions, etc. We provide a draft version of this in Appendix A.

3 Computer Design

The MagAO-X computing system includes three custom computers: the Real-Time Computer (RTC), the In-
strument Control Computer (ICC), AO Operations Computer (AOC). The specifications and mechanical design of
these three computers is presented in Section 3.2. MagAO-X will also make use of the existing workstations in the
Magellan Clay control room for science operations (zorro and guanaco).

3.1 Operating System: MagAO-X will standardize on 64-bit CentOS 7, chosen for long term stability.
The expected lifetime for CentOS 7 is3

• Full Updates: through the end of 2020

• Maintenance Updates: through 2024-June-30.

This will ensure a stable computing environment throughout the development, commissioning, and first four oper-
ating years of the instrument.

1We already use this technique in data reduction, see this script which creates a header to accomplish it: https:
//bitbucket.org/jaredmales/mxlib/src/6aec98c12c7fded062bcff3b7c58402e9ab62cb0/gengithead.
sh?at=master&fileviewer=file-view-default

2SHA-1s are free
3see https://wiki.centos.org/About/Product

2

https://visao.as.arizona.edu/software_files/visao/html/annotated.html
https://visao.as.arizona.edu/software_files/visao/html/annotated.html
https://bitbucket.org/jaredmales/mxlib/src/6aec98c12c7fded062bcff3b7c58402e9ab62cb0/gengithead.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/jaredmales/mxlib/src/6aec98c12c7fded062bcff3b7c58402e9ab62cb0/gengithead.sh?at=master&fileviewer=file-view-default
https://bitbucket.org/jaredmales/mxlib/src/6aec98c12c7fded062bcff3b7c58402e9ab62cb0/gengithead.sh?at=master&fileviewer=file-view-default
https://wiki.centos.org/About/Product

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 3 of 14

CentOS 7 also has the advantage that up-to-date real-time (RT) kernel packages are readily available from the
CERN4 repositories. The RT kernel is used in the existing MagAO system on the VisAO computer, where priorities
were optimized for low-latency in several critical processes. The RT kernel will be employed on the RTC and the
ICC, and the AOC if needed.

4 Instrument Control

Here we describe our preliminary design for the instrument control software system (ICSS). This encompasses
control of the various stages and motors, the science cameras, and high level AO loop control (stop/start, status
monitoring etc).

4.1 INDI: We will employ the Instrument Neutral Distributed Interface (INDI) protocol (Downey, 2007)
for communication between the various components of the ICSS. INDI is now the de-facto standard withing the
Center for Astronomical Adaptive Optics (CAAO), where it is used for the LBTI control software and is an integral
part of the planned MMTAO upgrade (Milton, 2017). Using it has the advantage that one of the main developers
of INDI is a member of CAAO making support readily available.

INDI essentially replaces the real-time-database (RTDB) and message daemon (MsgD) middle-ware in the
AdOpt architecture. The basic architecture is that INDI devices communicate with a simple protocol via an INDI
server on the host machine, see Figure 1, left. INDI servers are connected over the network, providing communi-
cations between machines. A very nice CGI interface is possible, which will provide a light-weight interface for
astronomers to use, see Figure 1, right.

Figure 1: The INDI architecture. Source: the INDI wiki.

.

For MagAO-X, each of the RTC, ICC, and AOC will have an INDI server running and communicating with the
others. On RTC INDI will provide for monitoring the status of the AO loop, high level AO control (start/pause/stop,
etc), and show component status (PWFS camera, DMs). On the ICC INDI will be used to control the various stages,
motors, and mechanisms, control and interact with the science cameras, and monitor the status of the LOWFS loop.
On the AOC, an INDI device will interface to the TCS. The AOC INDI server will support the AO Operations
Interface, and through the fast-CGI capability and a web server provide the astronomer’s interface. The MagAO-X
INDI architecture is shown in Figure 2.

4ttp://linux.web.cern.ch/linux/rt/

3

ttp://linux.web.cern.ch/linux/rt/

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 4 of 14

Figure 2: The MagAO-X INDI architecture. Purple borders indicate INDI device, gold borders are INDI servers. Note that
several drivers are not shown on each machine, such as housekeeping and telemetry drivers which will publish properties.

.

4.2 MagAOXApp: The class defining an application in the MagAO-X ICSS will be derived from a standard
class called MagAOXApp. Similar to the AOApp and VisAOApp base class in the AdOpt and VisAO systems, this
will provide a standard set of functionality. This will include the INDI driver and client facilities, configuration,
logging, and management of real-time priority.

4.3 Configuration: For MagAO-X we will use ini-style configuration files. This a standard format using
key=value pairs and allows sections. For example

[basic]
name=The Name
rt_priority=0

[section2]
avector=0,3,5,6,3

Each derived class is responsible for knowing the intended type of each value. A template-based configuration
parsing system will be used for ease of coding.

The MagAOXApp will employ a cascaded configuration system. At startup, the application will configure itself
using the following sources in order

1. Default configuration [compiled in]

2. System Global configuration [set by environment variable, common to all MagAOXApp processes]

3. App global configuration [location set by environment variable, name compiled in]

4. Command line specified configuration file.

4

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 5 of 14

Only the default configuration needs to exist. Each level overrides the previous. By specifying the location of
configuration files via environment variables, we will have a straightforward way to maintain several configurations
(e.g. for lab, cleanroom, and telescope).

4.4 Interprocess Communication: Non-real-time interprocess communication will generally take place
via the INDI protocol. Any process which needs the status of another will subscribe to the appropriate property.
An example is a focus stage which may need to know the position of several filter wheels in order to go to the
correct position. This will also suffice for such things as AO setup (i.e. which reconstructor to load could depend
on beamsplitter selection, among other things).

Real-time IPC on the ICC will make use of shared memory and semaphores. For instance, the science camera
controllers will notify the framegrabber process for that camera when the format has changed via a semaphore, cu-
ing the framegrabber process to read the shared memory buffer containing the configuration details. The framegrab-
ber in turn notifies the frame-writer process every time a new image is ready to write to disk.

The main AO control real-time software is described below.

4.5 Logging: Event logging is a crucial facility for a system such as MagAO-X. Here we include recording
specific events (“loop closed”) as well as telemetry such as WFS images and telescope position. These data will be
used for system performance analysis and diagnosis, and perhaps more importantly for data reduction. Given our
goal of recording all system data for future use in data reduction, we want to have a very efficient log system.

A lesson learned from the AdOpt system is that ASCII logs can use a great deal of disk space over time —
especially when things going wrong causes frequent logging, the time when we least want to be managing disk
space. Furthermore, having a somewhat rigid log structure should be more efficient for later analysis. In MagAO-X
we will address these issues by logging only an an event code and a time-stamp, along with data of known format
based on the event code, all in binary. That is log files will not be easily human-readable as stored on disk.

The event code is a 32-bit fixed width unsigned integer, uint32_t. This gives 4,294,967,296 independent
event codes, which we assess is more than enough.

The time-stamp will be stored as two fixed-width integers, where the first int64_tholds the whole seconds
since the Unix epoch and the second int32_tholds the nanosecond. This is the timespec structure, except
we are explicit about the integer width (another lesson learned from AdOpt, where the timeval structure was a
source of 32/64 compatibility problems, though we are unlikely to use 32-bit systems).

So a time stamp consists of a minimum of 12 bytes. For comparison logging to nanosecond precision with
ASCII requires a string of the form YYYYMMDDHHMMSSNNNNNNNNN, which is 23 bytes. This could be
hex encoded, say, reducing it to 12 bytes. We could use a 32-bit unsigned integer for the seconds field, but this
would reduce compatibility with the standard library on 64-bit linux5. Consider, though, that MagAO-X has a
maximum operating frequency of 3700 Hz. Assume that an average of 10 events are logged each timestep (a
conservatively high number). The extra 4 bytes then amounts to 3700*10*4 = 16 kB/sec = 5 GB/10-hrs. This is
a relatively small overhead compared to the several TB of image data we will record in the same time and so we
consider it negligible.

Human readable logs in ASCII would take the form:

YYYY-MM-DDTHH:MM:SS.SSSSSSSSS INF loop closed\n [46 bytes]

5and place us at risk of the Unix millenium bug in 2038, or 2106 if we used unsigned integers. We may not operate for that long though,
so this if of minor concern.

5

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 6 of 14

YYYY-MM-DDTHH:MM:SS.SSSSSSSSS ERR unable to connect\n [52 bytes]
YYYY-MM-DDTHH:MM:SS.SSSSSSSSS INF telra 12:00:00.00\n [52 bytes]

In contrast, these three log entries will take 16, 16, and 24 bytes respectively, or 37% of the disk space.
Logs will then be saved as binary records in HDF5 files on a per-process basis. For efficient access, these

records will be have a maximum length (to be optimized) and have the timestamp of the first entry recorded as
an attribute in the file. Parsing each record will require determining the type from the event code and calling an
appropriate function (with a pointer to the entry as argument) to read the data.

Simple utilities will display logs in human-readable format as needed (i.e. a replacement for tools like cat).
Using c++ templates we will provide a very simple logging interface within the code. A sketch of how this will

work is shown in Appendix B.
A drawback to this system will be the overhead of creating a new event code. This overhead will be paid during

development, every time a new log entry is needed. The minimum steps to create a new log entry will include:

1. declare log entry structure containing the event code

2. define length()member of the struct

3. declare and define a specialized log<>()function to do the work of logging.

In general this will also necessitate updating the log parsing facility to handle this new event type. A database of
event codes will also be maintained automatically with a code analyzer minimizing effort to safely generate a new
one.

4.6 RT Priority: MagAOXApp based processes will have the ability to set their real-time (RT) priority.
This will be determined by a configuration setting, allowing for optimization. This requires installing processes
with mode 4755. Upon startup, processes will immediately decrease privileges to the lowest setting, and only
increase privileges to set RT priority. The MagAOXApp will do this by default during construction 6.

5 TCS Interface

The instrument-TCS interface at Magellan is well documented in Eychaner (2015). Instruments connect via a
TCP/IP socket and send and receive formatted ASCII. We have already implemented a process called the MagAOI
(for MagAO Interface) which handles TCS queries at 1 Hz. This retrieves all data available from the TCS which is
relevant to the MagAO system. We will adapt this code to work as an MagAOXApp (and INDI Driver and Client)
and use it to manage interfacing with the TCS. In Appendix C we list all the TCS parameters which will be used.

As part of the MagAO test system, we developed a software TCS simulator which will be used for MagAO-X
software development and lab testing.

6 User Interfaces

Based on long experience using it on the MagAO project, we plan to avoid running GUIs via x-forwarding on
ssh. There are two main GUIs to be provided.

6See VisAO base() at https://visao.as.arizona.edu/software_files/visao/html/VisAOApp__base_8cpp_
source.html for a working example

6

https://visao.as.arizona.edu/software_files/visao/html/VisAOApp__base_8cpp_source.html
https://visao.as.arizona.edu/software_files/visao/html/VisAOApp__base_8cpp_source.html

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 7 of 14

6.1 The Astronomer Interface: Following typical practice in CAAO INDI implementations (such as at
the LBTI), astronomers will interact with the instrument using a GUI implemented using the jQuery UI framework,
and running on a web browser. This will be served by a web server running on the AOC, connected to the AOC
INDI server via the W3 fcgi protocol. This will be very flexible, allowing astronomers to use the workstations in
the Clay control room with minimal fuss.

We will also provide support for observation scripting through this interface.

6.2 The AO Operator Interface: Experience on MagAO has shown that reliable high-speed display of
AO status, including PWFS images and DM commands and positions, is extremely helpful in optimizing AO
performance. To that end, we will implement a custom AO interface served on the AOC. It will make use of 4
monitors, and its organization will be optimized for ease of use. For instance, all buttons needed to operate the
AO system will be located on a single pane – it will not be necessary to switch tabs or windows while operating
the loop. Where appropriate, this may also make use of a web-browser interface (likely re-using code from the
Astronomer Interface). Where needed, compiled Qt will be used for high performance.

To support the reliable high-speed AO updates, we will send telemetry and diagnostic data from the RTC and
ICC to the AOC on an as-displayable basis. For instance, it is typically only possible to display PWFS images
at ∼30 Hz. In this case, a decimator process on the RTC will send frames on only 30 fps to the AOC. This will
minimize network traffic, and processing time devoted to sending telemetry.

7 Real-time Software

For the real-time control of the AO loops we will use the RT software (RTS) developed by MagAO-X Co-PI
Olivier Guyon for the Subaru SCExAO instrument. It is Linux-based, open-source C code along with high-level
scripts. It uses publicly available libraries, including CUDA and MAGMA (for GPU computing), FFTW, FISIO,
GSL. The source code is available at https://github.com/oguyon/AdaptiveOpticsControl.

Because we are using essentially identical hardware to SCExAO (BMC 2k MEMS and OCAM-2K EMCCD)
we save significant development time in implementing our RTS. Here we provide a very brief overview of the
highlights of this system. More details are given in Appendix D to this Section.

7.1 Performance on Hardware: The RTS runs on a single multi-core computer. Minimum 15 cores sys-
tem, 128GB ram (heavy use of shared memory and shielded processes running on single core). Supports NVIDIA
hardware (CUDA lib). Interfaces to hardware through shared memory structure. Hardware already coupled with
RTS: BMC deformable mirror, Ocam2k camera, SAPHIRA camera (with UH readout electronics), OwlCam In-
GaAs Raptor Photonics camera, Andor sCMOS.

7.2 Speed: Largely limited by hardware. Fully system timing stable at 10us level, and RTS latency due
to IPC, TCP transfers between computers, and GPU transfers is < 100 µs total, so it can drive a ∼10 kHz loop
on multi-computer system, and ∼20 kHz loop on single computer. SCExAO implementation drives 2000-actuator,
14,400-sensor loop at 3.5kHz, limited by camera readout speed.

7.3 Flexible architecture: All input, output and intermediate data is stored as shared memory. A common
format for all shared memory data streams facilitates software development. Multiple processes run simultaneously
to perform operations on shared memory streams. Additional processes can be deployed (for example, real-time

7

https://github.com/oguyon/AdaptiveOpticsControl

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 8 of 14

analysis of an intermediate data stream) without impacting existing processed.
IPC is built in the shared memory structure which contains POSIX semaphores (default of 10 semaphores,

more if needed): 10 different processes can run on the same input. Each process waits on input stream(s), and posts
output stream(s) semaphore(s), so real-time operations can be chained, with multiple branches.

References

Downey, E. C. 2007, 755, L28

Eychaner, G. 2015, Instrument Communication with the Magellan Telescopes, Tech. rep.

Milton, M. 2017, MMT AO ASM Upgrade Software Architecture, Tech. rep.

8

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 9 of 14

A Coding Standards

Here we show some sketches of our standard coding practices, including use of doxygen comments.

///Brief description for one parameter function
/** Long description

*
* \returns functions should return 0 on success, and a negative integer to

indicate error.

*
* \tparam T document the type here.

*/
template<typename T>
int aFunction(T & param /**< [in/out] documentation for param*/)
{

//code goes here.

return 0; ///\retval 0 on success.
}

///Brief description for two or more parameter function
/** Long description

*
* \returns functions should return 0 on success, and a negative integer to

indicate error.

*
* \tparam T1 document the type of param1 here.

* \tparam T2 document the type of param2 here.

*/
template<typename T1, typename T2>
int aFunction(T1 & param1 //< [out] documentation for param1, an output

T2 & param2 //< [in] documentation for param2, an input
)

{
//code goes here.

return 0; ///\retval 0 on success.
}

///Brief description for a class
/** Long description

*
* \tparam _T document type _T/T here.

*/
template<typename _T>
class aClass

9

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 10 of 14

{
public:

typedef _T T; ///< public typedefs first, with documentation. All template
parameters typdef-ed as shown.

aClass(); ///<Default c’tor

˜aClass(); ///<Destructor.

protected:
typeT member1; ///<Document protected members.

public:

int actionFoo(T & inPlace /**< [in/out] parameter documentation*/);

int actionfoo(T & after, ///< [out] parameter documentation
T & before ///< [in] parameter documenation

);

}

10

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 11 of 14

B Logging Code Sketch

Here we sketch the logging framework.

namespace logger
{

struct timespecX
{

int64_t time_s;
int32_t time_ns;

};

//Logger events are declared:
struct loop_closed
{

const uint32_t eventCode = 1000;

void length(uint32_t * logPtr /**< A pointer to a log entry, in this case not
used */)

{
return 12;

}
};

struct tel_pos
{

const uint32_t eventCode = 103458;

void length(uint32_t * logPtr /**< A pointer to a log entry, in this case not
used */)

{
return 12 + 8 + 7 + 6 + 6 + 4 + 7; // the size of the TCS responses, after

’.’ is removed.
}

};

struct user_log
{

const uint32_t eventCode = 38958;
};

//etc...

//And template specializations of the log function:
template<typename logT>

11

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 12 of 14

void log();

///Log specializaton for the loop closed event
template<>
inline void log<loop_closed>()
{

// Step 1: get timestamp
// Step 2: format and store log

}

///Log specialization for telescope position
template<>
inline void log<tel_pos>(char[8] telra, ///< Telescope RA as returned by TCS,

with ’.’ removed
char[7] teldc, ///< Telescope Dec as returned by TCS, with ’.’

removed
char[6] telep, ///< Telescope Equinox as returned by TCS, with

’.’ removed
char[6] telha, ///< Telescope HA as returned by TCS, with ’.’

removed
char[4] telam, ///< Telescope Airmass as returned by TCS, with

’.’ removed
char[7] rotangle ///< Telescope rotator angle as returned by

TCS, with ’.’ removed
)

{
// Step 1: get timestamp
// Step 2: format and store log

}

///Log specializaton for the loop closed event
template<>
inline void log<user_log>(const std::string & fromUser)
{

// Step 1: get timestamp
// Step 2: format and store log
// Note: here the format must include a string length.

}

//etc...

}; //namespace logger

And then within the code itself entries such as

using namespace logger;

12

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 13 of 14

log< loop_closed >();

log< tel_pos >(telra, teldc, telep, telha, telam, rotangle);

//User enters a log from a GUI:
// std::string fromUser <--- "Photometric conditions"

log< user_log >(fromUser);

13

MagAO-X Preliminary Design
Computers & Software

Doc #: MagAOX-001
Date: 2017–04–23
Status: Rev. 0.0
Page: 14 of 14

C TCS Parameters

Here we collect the various telescope and environment parameters which will be queried and logged.

Table 1: Telescope and Environment Parameters

TCS Name TCS Format Stored As Size Rate Notes
[Bytes] [Hz]

Telescope Position
dateobs YYYY-MM-DD char[8] 8 0.1 UT date in year month day format.

ut HH:MM:SS char[6] 6 1 UT time in hours minutes and seconds.
st HH:MM:SS char[6] 6 1 Sidereal time in hours minutes and seconds.
ra HH:MM:SS.SS char[8] 8 1 Right ascension in hours, minutes, and seconds.

dec DD:MM:SS.S char[7] 7 1 Declination in degrees, minutes, and seconds.
epoch YYYY.YY char[6] 6 1 Equinox of current telescope coordinates.

ha HH:MM:SS char[6] 6 1 Hour angle in hours, minutes, and seconds.
airmass A.AAA char[4] 4 1 Observational airmass.

telaz AAA.AAAA char[7] 7 1 Azimuth angle, in degrees.
telel EE.EEEE char[6] 6 1 Elevation angle, in degrees.
zd ZZ.ZZZZ char[6] 6 1 Zenith angle, in degrees.

telpa PPP.PPPP char[7] 7 1 Parallactic angle, in degrees.
teldm DDD char[3] 3 1 Dome azimuth angle, in degrees.
dmstat DD char[2] 2 1 Dome status (0 = closed; 1 = open; -1 = unknown)

telguide ab char[2] 2 1 a: 0 = not tracking, 1 = tracking; b: guider number of active guider, or 0 if not guiding
gdrmountmv abc char[3] 3 1 Telescope and guider motion status (see below)

mountmv abcd char[4] 4 1 Telescope and rotator motion status flags (see below)
telfocus FFFFFF char[6] 6 1 Secondary mirror focus (Z axis) set (instrument) offset, in microns.
vefocus FFFFFF char[6] 6 1 Secondary mirror focus (Z axis) encoder reading, in microns.
vezima FFFFFF char[6] 6 1 Secondary mirror Z axis ima (Shack-Hartmann) offset, in microns .
vezpsn FFFFFF char[6] 6 1 Secondary mirror Z axis psn (flexure) offset, in microns.
vexset FFFFFF char[6] 6 1 Secondary mirror X axis set (instrument) offset, in microns.
vexenc FFFFFF char[6] 6 1 Secondary mirror X axis encoder reading, in microns.
vexima FFFFFF char[6] 6 1 Secondary mirror X axis ima (Shack-Hartmann) offset, in microns
. vexpsn FFFFFF char[6] 6 1 Secondary mirror X axis psn (flexure) offset, in microns.
veyset FFFFFF char[6] 6 1 Secondary mirror Y axis set (instrument) offset, in microns.
veyenc FFFFFF char[6] 6 1 Secondary mirror Y axis encoder reading, in microns.
veyima FFFFFF char[6] 6 1 Secondary mirror Y axis ima (Shack-Hartmann) offset, in microns.
veypsn FFFFFF char[6] 6 1 Secondary mirror Y axis psn (flexure) offset, in microns.
vehset FFFFFF.FFF char[9] 9 1 Secondary mirror H axis (rotation) set (instrument) offset, in arcseconds.
vehenc FFFFFF.FFF char[9] 9 1 Secondary mirror H axis (rotation) encoder reading, in arcseconds.
vehima FFFFFF.FFF char[9] 9 1 Secondary mirror H axis (rotation) ima (Shack-Hartmann) offset, in arcseconds.
vehpsn FFFFFF.FFF char[9] 9 1 Secondary mirror H axis (rotation) psn (flexure) offset, in arcseconds.
vevset FFFFFF.FFF char[9] 9 1 Secondary mirror V axis (rotation) set (instrument) offset, in arcseconds.
vevenc FFFFFF.FFF char[9] 9 1 Secondary mirror V axis (rotation) encoder reading, in arcseconds.
vevima FFFFFF.FFF char[9] 9 1 Secondary mirror V axis (rotation) ima (Shack-Hartmann) offset, in arcseconds.
vevpsn FFFFFF.FFF char[9] 9 1 Secondary mirror V axis (rotation) psn (flexure) offset, in arcseconds.
telroi R char[1] 1 0.1 Rotator of interest (0 to 5 are NASW, NASE, CASS, AUX1, AUX2, and AUX3 respectively).

rotmode R char[1] 1 0.1 Rotator tracking mode; normally either 0 (OFF; no tracking) or 2 (EQU; equatorial tracking, rotator tracks sky).
rotangle RRR.RRRR char[7] 7 1 Current rotator offset angle, in degrees.
nrotoff RRR.RRRR char[7] 7 1 Angle between rotator zero and sky north for input coordinates and rotator offset, in degrees.
rotatore RRR.RRRR char[7] 7 1 Current rotator encoder angle, in degrees.

User Catalog Input
catra HH:MM:SS.SS char[8] 8 0.1 Current catalog object right ascension.
catdc DD:MM:SS.S char[7] 7 0.1 Current catalog object declination.
catep YYYY.YY char[6] 6 0.1 Current catalog object equinox.
catro RRR.RRRR char[7] 7 0.1 Current catalog object rotator offset angle, in degrees.
catrm TTT char[3] 3 0.1 Current catalog object rotator offset mode; one of OFF, EQU, GRV, or HRZ.
catobj string char[30] 30 0.1 Current catalog object name (up to 30 characters, containing no spaces).

Environment
fwhm FF.FF char[4] 4 0.1 30-second average FWHM value from the active guider.

dimmfw FF.FF char[4] 4 0.1 DIMM seeing, available from wx database, not TCS.
mag1fw FF.FF char[4] 4 0.1 Baade seeing, available from wx database, not TCS.
wxtemp TTT.TT char[5] 5 0.1 Outside temperature (degress Celcius).
wxpres PPPP.PP char[6] 6 0.1 Outside pressure (millibars).

wxhumid HHH.HH char[5] 5 0.1 Outside humidity (percent).
wxwind VVV.VV char[5] 5 0.1 Outside wind intensity (mph).
wxwdir DDD.DD char[5] 5 0.1 Outside wind direction (degrees).

wxdewpt TTT.TT char[5] 5 0.1 Outside dewpoint (degress Celcius).
ttruss TT.TTT char[5] 5 0.1 Telescope truss temperature (degress Celcius).
tcell TT.TTT char[5] 5 0.1 mirror cell temperature (degress Celcius).

tseccell TT.TTT char[5] 5 0.1 Secondary mirror cell temperature, skyward side (degress Celcius).
tambient TT.TTT char[5] 5 0.1 Dome air temperature (degress Celcius).

tair TT.TTT char[5] 5 0.1 Primary mirror air temperature (degress Celcius).

14

3.3 Software
Appendix D

SCExAO Real-Time Architecture

MagAO-X Preliminary Design
3.3 Software Design

Doc #:
Date:
Status:

MagAOX-001
2017-04-18

v. 0.0

AO Loop Control Software

Overview

Linux-based

Open-source, no closed library

C code (~100k lines) + high-level scripts (baseline control interface using bash
scripts provided)

Uses libraries: CUDA & MAGMA (GPU computing, optional), FFTW, FITSIO,
GNU scientific library, readline

Source code + example simulated AO system:
https://github.com/oguyon/AdaptiveOpticsControl

Hardware

Hardware Requirements / compatibility:

RTS runs on a single multi-core computer. Minimum ~15 cores system, 128GB
ram (heavy use of shared memory and shielded processes running on single
core)

CPU only or CPU+GPU computing engine. Requires GPU(s) for high speed / high
actuator count. Supports NVIDIA hardware (CUDA lib).

Can span multiple computers (for example, camera or DM driven by computer
other than main RTS). Software uses and configures fast private low-latency
TCP link (eg. 10GbE or 40GbE fibers) for transfers.

Interfaces to hardware through shared memory structure. Hardware already
coupled with RTS: BMC deformable mirror, Ocam2k camera, SAPHIRA camera
(with UH readout electronics), OwlCam InGaAs Raptor Photonics camera,
Andor sCMOS.

Capabilities

Speed

Largely limited by hardware. Fully system timing stable at 10us level, and RTS latency due
to IPC, TCP transfers between computers, and GPU transfers is <100us total → can drive
~10 kHz loop on multi-computer system, and ~20 kHz loop on single computer.
SCExAO implementation drives 2000-actuator, 14,400-sensor loop at 3.5kHz, limited by
camera readout speed.

Flexible architecture

All input, output and intermediate data is stored as shared memory. A common format for all
shared memory data streams facilitates software development. Multiple processes run
simultaneously to perform operations on shared memory streams. Additional processes can
be deployed (for example, real-time analysis of an intermediate data stream) without
impacting existing processed.

IPC is built in the shared memory structure which contains POSIX semaphores (default of
10 semaphores, more if needed): 10 different processes can run on the same input. Each
process waits on input stream(s), and posts output stream(s) semaphore(s) → Real-time
operations can be chained, with multiple branches

Example control GUI (bash scripts)

Calibration Work Flow

./conf_staged/

conf_wfsref0_name.txt
conf_zrespM_name.txt
conf_dmmap_name.txt
conf_wfsmap_name.txt
conf_dmmaskRM_name.txt
conf_dmslaved_name.txt
conf_dmmask_name.txt
conf_wfsmask_name.txt
conf_LOrespM_name.txt
conf_LOwfsref0_name.txt

For each file:
conf_<name>_name.txt points to archived file location

conf/conf_<name>_name.txt are read by function ReadConfFile for
loading into shared memory and FITS copy to
./conf/aol#_<name>.fits

wfsref0.fits
zrespM.fits
dmmap.fits
wfsmap.fits
dmmaskRM.fits
dmslaved.fits
dmmask.fits
wfsmask.fits

LOrespM.fits
LOwfsref0.fits
LODMmodes.fits

DMmodes##
respM##
contrM##
contrMc##
contrMcact##_00

respM
DMmodes
contrM

Compute
modes & CM

./conf/conf_<name>_name.txt

configuration update

configuration
load files ./conf/aol#_<name>.fits

SHARED MEMORY: aol#_<name>

./conf_zrm_staged/zrespM.fits

./conf_zrm_staged/dmmap.fits

./conf_zrm_staged/wfsmap.fits

./conf/RMmat.fits

./conf/RMpixindex.fits

./conf/RMpokeCube.fits

./zrespmat0.fits

./wfsref00.fits

./zrespM.fits

./dmmap.fits

./wfsmap.fits

acquire HO RM
[aolMeasureZrespmat2]

decode & process
[aolCleanZrespmat2]

copy

./dmmask.fits

./wfsmaskRM.fits

Make masks
[aolmkMasks]

./dmslaved.fits

./dmmask.fits

Make DM slaved
[mkDMslavedActprox]

copy

– or – (DMmode branch)

./wfsref00.fits

flux-normalize

./wfsref0.fits

copy

High order / zonal
calibration

Low order / modal calibration
(optional, only if Zonal DM)

copy

Conventions :
Modal DM: “actuators” indices have no spatial meaning

→ No spatial filtering options
→ “Direct write” CM and “Modal” CM are the same (1 mode = 1 actuator)

Zonal DM: actuator indices correspond to spatial coordinates
→ Need linear transformation between mode coefficients and actuators

If re-using masks,
keep from previous
calibration

Main DM channels (physical actuators)

Total DM
displacement

DM
control

OFFSET
(flat)

Resp
matrix

AO
control

Zero pt
offset

LOWFS modes (modal actuators)
Mode
coeffs

Mode
DM
maps

Mode
PyWFS
resp

PyWFS
image

PyWFS
resp
matrix

PyWFS
reference

process aolrun (see next slide)

FPWFS
image

FPWFS
Modulation
maps

Mode
FPWFS
resp

FPWFS
probe
images

FP
solution

LOWFS
image

LOWFS + HOWFS +
FPWFS
wavefront control
architecture

LOWFS
wfsref0

LOWFS
resp mat
(modal)

LOWFS LOOP
loopnb = 1
DMindex = 01

PyWFS LOOP
loopnb = 0
DMindex = 00

FPWFS
LOOP

loopnb
= 2

Astrom
offset

LOWFS
offset

PyWFS
offset

FPWFS
probe
offset

aol0_wfszpo3aol0_wfszpo2aol0_wfszpo1aol0_wfszpo0

PyWFS
wfsref0

aol1_wfszpo0 aol1_wfszpo1 aol1_wfszpo2 aol1_wfszpo3LOWFS
wfsref

aolzpwfscloop
(AOloopControl_WFSzeropoint_sum_update_loop)

aolzpwfsloop
(AOloopControl_WFSzupdate_loop)

aoloopcontrolDMcomb
(AOloopControl_DM_CombineChannels)

OFFSET
(flat)

PyWFS
RM

PyWFS
control

 ZAP
LOWFS speckle

probes
speckle
control

zpoffset #1 zpoffset #2 zpoffset #3

Zernike
offsets

zpoffset #4

TT LQG

Astrom
grid
zpoffset #5 zpoffset #6

Turbulence AO sim

MASTER LOOP

Control Matrix Computation Modes
WFSnorm (./conf/conf_WFSnormalize.txt) WFS normalization mode C code: AOconf[loop].WFSnormalize

0: Do not normalize WFS images
1: Normalize WFS images

WFSnorm should be left unchanged between RM acquisition and Loop control

DMprimaryWrite (./conf/conf_DMprimWriteON.txt) DM primary write C code: DMprimaryWrite_ON
0: DM primary write is off
1: DM primary write is on

CMmode (./conf/conf_CMmode.txt) Combined Control matrix mode C code: MATRIX_COMPUTATION_MODE
0: not combined: control matrix is WFS pixels → modes

→ Linking aol#_DMmode_meas ↔ aol#_modeval
→ modesextractwfs reads from aol_DMmode_meas instead of computing

1: combined: control matrix is WFS pixels → DM actuators

DMMODE (./conf/conf_DMMODE.txt) DM mode (zonal vs. modal) Bash script only, only affects bash scripts and options
ZONAL: pixel coordinates correspond to DM actuators physical location

→ spatial filtering enabled for DM modes creation
→ blocks built by spatial frequencies, user can set independent gain values for mode blocks

MODAL: DM pixels correspond to abstract modes
→ no spatial filtering, setting 1 block only

Note: DMMODE=ZONAL → CMMODE=MODAL (CPA-splitting of modes into blocks)

GPUmode (./conf/conf_GPUmode.txt) # of GPUs to use for CM multiplication C code: AOconf[loop].GPU
0: use CPU
>0: number of GPUs

if CMmode=1 and GPUmode>0:
GPUallmode (./conf/conf_GPUall.txt) Use GPU for all computations C code: AOconf[loop].GPUall = COMPUTE_GPU_SCALING

0: Use CPU for WFS reference subtraction and normalization
→ WFS reference subtraction and normalization done by CPU (imWFS0→ imWFS1→ imWFS2)
→ CM multiplication input is imWFS2 (GPU or CPU)

1: Use GPU for all computation
→ WFS reference subtraction and normalization done by GPU
→ GPU-based CM multiplication input is imWFS0

Control Matrices

CMmode
MATRIX_COMPUTATION_MODE

GPUmode GPUallmode
COMPUTE_GPU_SCALING

Camera read output
(Read_cam_frame)

WFS reference
subtraction

Control Matrix operation(s)

0 0 0 → imWFS1 CPU subtraction →
imWFS2

contrM x imWFS2 → DMmode_meas [CPU]
DMmode_meas → cmd_modes [CPU]
DMmodes x cmd_modes →dmC [CPU]

0 >0 0 → imWFS1 CPU subtraction →
imWFS2

contrM x imWFS2 → DMmode_meas [GPU]
DMmode_meas → cmd_modes [CPU]
DMmodes x cmd_modes →dmC [GPU]

0 [to be done] >0 1 → imWFS0 /
GPU_alpha, GPU_beta

done in GPU as part
as CM mult

contrM x imWFS0 →DMmode_meas [GPU]
DMmode_meas → cmd_modes [CPU]
DMmodes x cmd_modes →dmC [GPU]

1 0 0 → imWFS1 CPU subtraction →
imWFS2

contrMc x imWFS2 → meas_act [CPU]
meas_act → dmC [CPU]

1 >0 0 → imWFS1 CPU subtraction →
imWFS2

contrMcact x imWFS2_active → meas_act_active [GPU]
meas_act → dmC [CPU]

1 >0 1 → imWFS0 /
GPU_alpha, GPU_beta

done in GPU as part
as CM mult

contrMcact x imWFS0_active → meas_act_active [GPU]
meas_act → dmC [CPU]

Matrix Description Input→ output Gain control (primary write) Notes

contrM
(CMmode=0)

Full modal control matrix
Split in multi-GPU

WFSpix → DMmodes 0.0<loopgain<1.0
0.0<DMmodes_GAIN[m]<1.0

gainMB has no effect and will not update contrM

contrMc
(CMmode=1,
GPUmode=0)

Full combined control
matrix
Split in multi-GPU

WFSpix → DMactuators 0.0<gainMB[k]<1.0
0.0<loopgain<1.0

contrMc re-built for each change of gainMB
If DM is MODAL:
gainMB has no effect and will not update contrM

contrMcact
(CMmode=1,
GPUmode=1)

Combined control matrix,
only active pixels
Split in multi-GPU

Active WFS pixels → Active
DM actuators

0.0<gainMB[k]<1.0
0.0<loopgain<1.0

contrMcact re-built for each change of gainMB
If DM is MODAL:
gainMB has no effect and will not update contrM

aol#_imWFS0

aol#_imWFS1

GPUallmode=0

aol#_imWFS2
GPUallmode=0

normalized ref-subtracted

aol#_DMmode_meas

CMmode=0

GPUallmode=1, CMmode=0

CMmode=1

aol#_meas_act
GPUallmode=1, CMmode=1

aol#_dmC

process / function

aol#_wfsim

AOconf.shm

[thread]

shared memory stream

file system

conf/conf_LOOPNAME.txt

conf/conf_GPU.txt

conf/conf_GPUall.txt

conf/conf_COMPUTE_TOTAL_ASYNC.txt

conf/conf_CMmode.txt

aol#_wfsdark

conf/dark.fits

aol#_wfsref0

conf/refwfs0.fits

aol#_imWFS0

aol#_imWFS1

aol#_imWFS2

conf/aol#_DMmodes.fits

aol#_dmC

aol#_DMmodes

aolrun /
AoloopControl_InitializeMemory

check size

aol#_DMmode_cmd

aol#_DMmode_meas

aol#_DMmode_AVE

aol#_DMmode_RMS

aol#_DMmode_GAIN

aol#_DMmode_LIMIT

aol#_DMmode_MULTF

conf/aol#_respM.fits

conf/aol#_contrM.fits

aol#_respM

aol#_contrM

local memory

aolrun /
Read_cam_fr
ames

semaphore- (wait)
semaphore+ (post)

[dark subtract threads]
AOLCOMPUTE_DARK_SUBTRACT_sem_name-
subtract dark
AOLCOMPUTE_DARK_SUBTRACT_RESULT_sem_name+

8x threads

[image total thread]
COMPUTE_TOTAL_ASYNC_sem_name-
subtract dark
COMPUTE_TOTAL_ASYNC_sem_name+

if AOLCOMPUTE_TOTAL_ASYNC = 1

AOconf[#].WFStotalflux

if AOLCOMPUTE_TOTAL_ASYNC = 0

initialization

GPU_alpha ~ 1/Aoconf[#].WFStotalflux
GPU_beta ~ -1

aolrun /
AOcompute

aol#_imWFS0

aol#_imWFS1

wfsmask

wfs2active

compute
mapping

dmmask

DM_active_map

compute
mapping

aol#_meas_act_active

initialization (CMmode = 1)

contrM contrMc

contrMcact

aol#_imWFS2

aol#_DMmode_meas

GPU mult cmat
y = GPU_alpha M x + GPU_beta y

aol#_imWFS2active_00

aol#_meas_act

remap

[Matrix multiplication]
gpumatmultconf[index].semptr1[ptn]-
GPU stream computation
gpumatmultconf[index].semptr5[ptn]+

NB GPUs threads

pre-computed
y = M wfsref

aol#_DMmode_cmd

aol#_dmC

aolrun /
set_DM_modes

+= *gain
*= mult

aolrun /
GPU_loop_Mult
Mat_execute

GPUs (xNB GPUs)

aolrun /
AoloopControl_loadconfigure

Process aolrun (Direct DM write)

aol#_dmdisp

computation step

default = 1

default = 0

default = 0

sem0+ : semaphore 0 post
sem0- : semaphore 0 wait

aol#_wfsim: sem0-

dark subtract

aol#_wfsim: sem0+

aol#_dmZP DM comb

aol#_dmRM

compute WFS offset

aol#ZP / AOloopControl_WFSzpupdate_loop

WFS Camera

aol#_wfsref

aol#_dmZP: sem1-

aol#_dmZP:
sem0-

DM offset
DM

Normalize

remove reference

GPU=0, CMmode = 0

GPU=0, CMmode = 1

GPU>0, CMmode = 0 (GPUall = 0)

GPU>0, CMmode = 1 (GPUall = 0)

GPU>0, CMmode = 0 (GPUall = 1)

GPU>0, CMmode = 1 (GPUall = 1)

Compute Total

normfloorcoeff

GPUall = GPU_COMPUTE_SCALING
CMmode = MATRIX_COMPUTATION_MODE

aol#_respM

aol#_contrM

conf/aol#_dmmask.fits

conf/aol#_wfsmask.fits

conf/aol#_DMmodes##.fit
s

aol#_DMmodes##

conf/aol#_respM##.fits aol#_respM##

conf/aol#_contrM##.fits aol#_contrM##

conf/aol#_contrMc##.fits aol#_contrMc##

conf/aol#_contrMcact##.fi
ts

aol#_contrMcact##

for each mode block

aol#_contrMc

sum

conf/aol#_contrMc.fits

aol#_contrMcactconf/aol#_contrMcact.fits

sum

CPU mult contrMc

aol#_gainbconf/aol#_gainb.fits

STATUS index (corresponding timers)00

19

04

05

14

20

wait for image20

01

02

03

15

19

16

17

18

06

07
08

10 09

aol#_wfszp0

aol#_wfszp1

aol#_wfszp2

aol#_wfszp3

computation triggered by
sem1 on aol#_wfsref

aol#zploop/
AOloopControl_WFSzeropoint_sum_update_loop

CPU mult contrM

← Preferred mode for speed

totalinv

Auxillary processes

aol#_meas_act aol#_modeval

aol#_modeval_ave

aol#_modeval_rms

size: #modes x 1

size: #modes x 10
averaging = 2^jj

size: #modes x 10
averaging = 2^jj

Matrix-vector multiply

aol#_dmC aol#_modevalc

aol#_modevalc_ave

aol#_modevalc_rms

size: #modes x 1

size: #modes x 10
averaging = 2^jj

size: #modes x 10
averaging = 2^jj

Matrix-vector multiply

aol#_mfiltmult

initialize at 0.99 value
for each mode

vector-vector multiply aol#_dmC

Decompose WFS measurements in modes

Decompose DM commands in modes + apply modal mult gains

DMmodes

DMmodes

Matrix-vector multiply

Zonal response matrix acquisition → masks

./auxscripts/aolMeasureZrespmat

./zrespmtmp/zrespmat_pos.NNN.fits (negative pokes)

./zrespmtmp/zrespmat_neg.NNN.fits (positive pokes)

./zrespmtmp/wfsref0_NNN.fits (WFS reference - accumulates)

./zrespmtmp/wfsimRMS.fits (WFS image RMS - accumulates)

./auxscripts/aolCleanZrespmat

zrespmat.fits
dmmap.fits
wfsmap.fits

aolcleanzrm

wfsmask.fits

dmmaskRM.fits

aolRMmkmasks

./conf/conf_DMmaskRMp0.txt : DM mask RM: low level percentile (p0)

./conf/conf_DMmaskRMc0.txt : DM mask RM: low level coefficient (c0)

./conf/conf_DMmaskRMp1.txt : DM mask RM: high level percentile (p1)

./conf/conf_DMmaskRMc1.txt : DM mask RM: high level coefficient (c1)
→subtract (perc(im,p0) * c0) →im1 → measure lim = perc(im1,p1) * c1
→ select, in im1, actuators values > lim

./conf/conf_WFSmaskRMp0.txt : WFS mask RM: low level percentile (p0)

./conf/conf_WFSmaskRMc0.txt : WFS mask RM: low level coefficient (c0)

./conf/conf_WFSmaskRMp1.txt : WFS mask RM: high level percentile (p1)

./conf/conf_WFSmaskRMc1.txt : WFS mask RM: high level coefficient (c1)

./auxscripts/aolmkMasks

aolmkslact

./auxscripts/mkDMslaveActprox

dmslaved.fits
dmmask.fits

function_zresp_on → function_zresp_off

./<name>/<name>_$datestr.fits

./conf/conf_<name>_name.txt

./conf_zrm_staged/

./conf/conf_WFSmaskSNRr.txt : fraction of elements
rejected due to low SNR

Making control modes (Zonal DM)
dmmask
active DM actuators

Create or load

CPAmodes
Fourier modes

Create

emodes
Excluded modes

remove

dmslaved
slaved DM actuators

Create or load

fmodes0all

fmodesWFS00all

zrespM
zonal RM

multiply

extrapolate

RMMresp
low order response

RMMmodes
low order modes

project

LOcoeff.txtfmodes0_xx

separate

remove null space
within each block
[SVDlim00]

fmodes1all

fmodes2all

remove DM modes
contained in previous
blocks, and enforce DM-
space orthogonality
between blocks [rmslim0]

remove null space
within each block
[SVDlim01]

fmodes2ball
fmodesWFS0all

multiply

wfsmask
active DM actuators

Create or load

project fmodesWFS0_xx

remove WFS modes
contained in previous
blocks, and enforce WFS-
space orthogonality
between blocks [rmslim1]

fmodes3_xx

fmodesWFS1_xx

fmodesWFS1all

fmodes3all

fmodes1_xx

fmodes2_xx

fmodes2b_xx

remove WFS null space
within each block
[SVDlim]

fmodesWFSall

fmodesWFS_xx

CREATE DM MODE BLOCKS
Modes are DM-orthogonal within
and between blocks

ORTHOGONALIZE
MODES IN WFS SPACE

cmat.fits

cmatc_xx
cmatcact_xxSVD pseudo-inv

SVD pseudo-inv

3034

2386

2056

DMmodes
zrespmat

(Modal DM)

SVDcoeff_xx.txt

SVDcoeff01_xx.txt

DM channels, loop 0

OFFSET
(flat)

PyWFS
RM

PyWFS
control

 ZAP LOWFS
speckle
probes

speckle
control

Zernike
offsets

TT LQG

Astrom
grid Turbulence AO sim

08 09 10 11

04 05 06 07

00 01 02 03

aol0_dmZP0 aol0_dmZP1 aol0_dmZP2 aol0_dmZP3

aol0_dmZP7aol0_dmZP6aol0_dmZP5aol0_dmZP4

aol0_wfszpo0 aol0_wfszpo1 aol0_wfszpo2 aol0_wfszpo3

aol0_wfszpo4 aol0_wfszpo5 aol0_wfszpo6 aol0_wfszpo7CPU zonal WFS
offset [aol0zploop#]

OFFSETTING
LOWFS (loop #1, dm01) → PyWFS (loop #0, dm00)

GPU zonal WFS offset
[GPUdm2wfsrefZ_dm#]

aol0_wfsref

aol0_wfsref0

GPU modal WFS offset
[GPUdm2wfsrefM_dm#]

dm01dispLoop 0 DM modes Loop 0 WFS modes

OR

CPU (part of dmcomb)

CPU (part of dmcomb)

Green color: process is part of loop #1

script
“aolWFSresoffloadloop”
slow offload of WFS
average

script
“aolmkWFSres”aol0_imWFS0

aol0_wfsref

aol0_wfsmask

aol0_imWFS0tot

aol0_wfsresm_ave

aol0_wfsres_ave

masked
Note: total flux = 0 over mask

dm2dm

dmwref0

Processes, output to DM (main loop)

WFS
image

DM “actuators”

Direct DM Write →
actuators

WFS modes
pixels → modes

loop gain

WFS-measured DM
mode coefficients

Open loop mode coefficients

Modal filtering
(clipping)

Predictive filter engine
[aol#PFb0apply] in aol0RT1

Predictive Filter
(shown here for
block #0)

Predicted mode coefficients

Modes → DM
actuators

aol#_modeval_ol

aol#_DMmode_LIMIT

aol#_modeval

aol#_modevalPFb0

aol#_DMmode_MULTF

aol#_modeval_dm_now
aol#_modeval_dm_now_filt

Current modal DM correction

Current modal DM
correction, filtered

modal DM correction at time of
available WFS measurement

aol#_modeval_dm

modal DM correction,
circular buffer

aol#_modeval_dm_C

aol#_gainb

block gains

loop mult
aol#_modeval_dm_now

Current modal DM correction

latency [frame] =
hardlatency_frame +
wfsmextrlatency_frame

sem3
wait

sem2
wait

should
match

complatency_frame (measured
by aolMeasureTiming)

wfsmextrlatency_frame (measured by aolMeasureTiming)

Extract WFS modes
[aol#mexwfs] in aol#RT1
auxscripts/modesextractwfs
GPU or CPU

Extract Open Loop WFS
modes
[aol#meol] in aol#RT
runs in AoloopControl, CPU

DM filtering writeback
[aol#dmfwb] in aol0RT
auxscripts/aolmcoeffs2dmmap
GPU or CPU

status index

20

statusM index00

0120

01

2020 00

20

03

06

07

08 09

Telemetry
statusM1 index00

10

sem4
wait

sem3
wait

dark
subtract

02

if DMprimaryWrite_ON

DM Primary Write

if modal

Open loop mode coefficients
buffer for predictive block

aol#_modevalol_PFb0

Predictive filter block
input watch
[aol#PFb0watchin]

Predicted mode coefficients

aol#_outPFb0

Predictive filter compute
[aol#PFb0comp]

loop ARPFgain
05

0604

aol#_modeval_ol_logbuff0

aol#_modeval_ol_logbuff1

disk

Predicted mode coefficients

aol#_modevalPF

DM map (test)
script
aolPFcoeffs2dmmap

Predicted DM map

aol#_dmPFout

Main process
[aol#run] in aol#RT
script auxscripts/aolrun
CPU (+ GPU)

[process name] (same name as tmux session)
aol0RT : CPU set

Note: DM map & coefficients show correction applied
→ open loop = WFS residual – dm
→ Wfresidual = Open loop WF + dm
→ dm = Wfresidual – open loop

subtract

timer index00

100100
00

log to disk
[logshim] in aol#log
CPU

aol#_DMmode_GAIN

gain[m] = loopgain * gainMB[block] * aol#_DMmode_GAIN[m]
mult[m] = loopmult * multfMB[block] * aol#_DMmode_MULT[m]
limit[m] = limitMB[block] * aol#_DMmode_LIMIT[m]

Zonal DM
only

Modal DM
only

transfer, decoding
200 us

Hardware Latency

issue DM
command

software + electronics latency

DM physical
latency

Camera exposure Camera exposure

Readout Readout

transfer, decoding

processing processing

HardwareLatency = DM soft + DM elec + DM phys + CAM readout/transfer + CAM processing + ½ exposure time
HardwareLatency = N x cam_exposure + dt

Camera exposureCamera exposure

½ cam_exposure - dt

SCExAO :
2kHz loop : 1057 us
3kHz loop : 975 us
difference = 82 us
expected difference = 83us
→ 1us error

260 us

50 us

200 us

167 us

50 us

250 us

Definition:
Time offset between DM command issued, and mid-point
between 2 consecutive WFS frames with largest difference

Measured
DM motion
time =
87.5us

RM acquisition - Timing

Frames averaged → RM Frames averaged → RM
Frames

excluded
Frames

excluded

WFS frame
arrives in

stream

delay
frames

DM moves
here

- - - - -++ + + + + --

hardware delay

DM moves
hereDM

command

RMdelay + 0.5 + #frames_excluded/2 = hardwdelay
→ RMdelay = hardwdelay - 0.5 - #frame_excluded/2
→ #delay_frames = ceil(RMdelay)
→ RMdelay1 = #delay_frame - RMdelay

RM acquisition runs in CPU set aol#RT2

RMdelay1

RMdelay 0.5 frexcl/2

Loop:
Wait on and read WFS frame → allocate WFS frame to appropriate frame block
If poke required: wait RMdelay1, then poke

	Introduction
	Software Management
	Version Control
	Coding Standards and Documentation

	Computer Design
	Operating System

	Instrument Control
	INDI
	MagAOXApp
	Configuration
	Interprocess Communication
	Logging
	RT Priority

	TCS Interface
	User Interfaces
	The Astronomer Interface
	The AO Operator Interface

	Real-time Software
	Performance on Hardware
	Speed
	Flexible architecture

	Coding Standards
	Logging Code Sketch
	TCS Parameters
	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17

